Study of pp η dynamics in the pp \rightarrow pp η reaction using WASA- at-COSY

Neha Shah

For WASA-at-COSY collaboration

IIT Bombay, India

Outline

Motivation Experimental set-up Analysis for ppη dynamics Conclusions & outlook

Motivation

- > Production of η -meson in NN collision is not well understood.
- Interaction of eta with nucleons using direct scattering experiments difficult.
- Study interaction by production near kinematical threshold
- > Mutual interaction will show up in differential cross-sections.
- » ppŋ system can be described by 12 variables, 7 are fixed by E-P conservation and particle masses
- First Invariant mass distribution of pp and p-η system
- > Orientation of the emission plane $(\theta_{\eta}^{*}, \phi_{\eta}^{*}, \psi_{\eta}^{*})$

MENU2010

Previous measurements for $pp{\rightarrow}pp\eta$

Excess Energy	Detector	Conclusions
10, 15.5 MeV	COSY-11 ^{1,2}	•Angular distributions \rightarrow isotropic • m_{pp}^2 , $m_{p\eta}^2$ \rightarrow show deviation from phase space •Explanation - pp FSI but enhancement at $m_{p\eta}^2$ could not be explained
16, 37 MeV	PROMICE/WASA ³	 Angular distribution of η→anisotropic Explanation - Ss/Sd interference
16, 41 MeV	COSY-TOF ⁴	 Angular distributions→isotropic m²_{pp}, m²_{pη}→show deviation from phase space Can not be explained by pp FSI alone
40, 72 MeV	CELSIUS/WASA ⁵	 Angular distributions→isotropic m²_{pp}, m²_{pη}→show deviation from phase space Explanation – contribution from higher partial waves
324, 412, 554 MeV	DISTO ⁶	•Angular distribution of $\eta \rightarrow$ anisotropy at lowest energy •anisotropy disappears as the energy increases •Explanation - N(1535) resonance and no need of higher partial waves

No consistent explanation yet available!

- 1 P Moskal et al., Phys. Rev. C 69, 025203(2004)
- 2 R. Czyzyjuewicz et al., Phys. Rev. Lett. 98, 122003 (2007)
- 3. H. Calen et al., Phys Lett. B 458, 190 (1999)
- 4 M. Abdel-Bary et al., Eur. Phys. J. A 16, 127(2003)
- 5 H Petren, Thesis 2009
- 6 F. Balestra et al., Phys. Rev. C 69, 064003 (2004)

3

WASA-at-COSY Detector

- > For pp η dynamic study pp \rightarrow pp ($\eta \rightarrow 3\pi^0$) is chosen
- > Data taken at beam energy 1.4 GeV (Q = 56 MeV)
- > Two charged track in the forward detector
- Six neutral clusters in central detector

Identification in forward detector

- > Identification of protons by using ΔE -E technique
- ➤ Calibration: Deposited energy → Kinetic energy
- > Theta and phi from Tracks
- Reconstruct four vectors of each proton

Proton identification

Missing mass of pp

» Missing mass of two protons

$$MM^{2} = (E_{beam} - E_{p1} - E_{p2})^{2} - (P_{beam} - P_{p1} - P_{p2})^{2}$$

Good mass resolution in forward detector helps in η tagging

Kinematic fit

- Kinematic fit is used to improve measured quantities by fitting known values and constraints.
- > The measured variables are adjusted within experimental errors so that the constraint equations are satisfied with minimum error.
- > **Confidence level :** $CL(\chi^2) = 1 \int P(\chi^2, n) d\chi^2$

Probability distribution

$$P(\chi^2, n) = \frac{2^{-n/2}}{\Gamma(n/2)} \chi^{n-2} e^{-\chi^2/2}$$

Kinematic fit

Confidence level:

> Constraints :

Energy-momentum balance $\rightarrow 4$ π^0 invariant mass $\rightarrow 3$ No constraint over η mass

Mass widths: Before kinematic fit σ = 56.5 MeV/c² After kinematic fit σ = 5.6 MeV/c²

Total cross-section

→ Total 9.7×10⁶ events of $\eta \rightarrow 3\pi^0$ from April-2007 data

 \triangleright we have production cross-section of η ,

 $\sigma = (9.83 \pm 0.03_{stat} + 3.47_{sys}) \ \mu b$

Normalization is the major source of error.

MENU2010

Total cross-section as a function of beam KE

Observables for ppŋ dynamics

Conclusions

- > Total cross-section for η production in pp has been measured.
- The invariant mass squared distributions for pp and pq show deviation from phase space.
- > Inclusion of pp FSI could not explain the data.

Outlook

The collaboration is planning to do measurements with polarised beam.

Partial waves

The low energy $pp \rightarrow pp\eta$ amplitude,

$$M = \tilde{A}_{Ss} \phi_f^{\dagger} (\hat{p} \cdot \boldsymbol{\varepsilon}_i) + A_{Sd} \phi_f^{\dagger} (\hat{p} \cdot \boldsymbol{k}) (\boldsymbol{k} \cdot \boldsymbol{\varepsilon}_i) + A_{Ps} \phi_i (\boldsymbol{q} \cdot \boldsymbol{\varepsilon}_f^{\dagger}) + A_{Ds} \phi_f^{\dagger} (\hat{p} \cdot \boldsymbol{q}) (\boldsymbol{q} \cdot \boldsymbol{\varepsilon}_i).$$

p momentum of initial proton K momentum of final η 2q relative momentum in the final two proton system $\epsilon_{l}(\epsilon_{f})$ spin-one polarization vector of the initial(final) pp pair $\phi_{l}(\phi_{f})$ spin-zero functions

The spin averaged matrix element square,

$$\overline{M}^{2} = \frac{1}{4} \Big[|\tilde{A}_{Ss}|^{2} + 2 k^{2} \operatorname{Re} \Big\{ \tilde{A}_{Ss}^{*} A_{Sd} \Big\} \cos^{2} \theta_{\eta} \\ + 2 q^{2} \operatorname{Re} \Big\{ \tilde{A}_{Ss}^{*} A_{Ds} \Big\} \cos^{2} \theta_{pp} + q^{2} |A_{Ps}|^{2} \Big],$$

The enhancement factors for (Ss)², Ss-Sd and Ss-Ds terms,

$$F_{SS}(q) = 0.440 + \frac{151.7}{1 + q^2/\alpha^2},$$

$$F_{SD}(q) = 0.968 + \frac{11.5}{1 + q^2/\alpha^2},$$

The differential cross-section,

$$d\sigma = \frac{N}{p} \left(F_{SS}(q) + a \frac{k^2}{\mu m_p} F_{SS}(q) \cos^2 \theta_\eta + b \frac{q^2}{\mu m_p} F_{SD}(q) \cos^2 \theta_{pp} \right) dLips,$$

(H. Calen et al, Phy. Lett. B 458 (1999) 190)